Application of Remote Sensing Data to Constrain Operational Rainfall-Driven Flood Forecasting: A Review
نویسندگان
چکیده
Fluvial flooding is one of the most catastrophic natural disasters threatening people’s lives and possessions. Flood forecasting systems, which simulate runoff generation and propagation processes, provide information to support flood warning delivery and emergency response. The forecasting models need to be driven by input data and further constrained by historical and real-time observations using batch calibration and/or data assimilation techniques so as to produce relatively accurate and reliable flow forecasts. Traditionally, flood forecasting models are forced, calibrated and updated using in-situ measurements, e.g., gauged precipitation and discharge. The rapid development of hydrologic remote sensing offers a potential to provide additional/alternative forcing and constraint to facilitate timely and reliable forecasts. This has brought increasing interest to exploring the use of remote sensing data for flood forecasting. This paper reviews the recent advances on integration of remotely sensed precipitation and soil moisture with rainfall-runoff models for rainfall-driven flood forecasting. Scientific and operational challenges on the effective and optimal integration of remote sensing data into forecasting models are discussed.
منابع مشابه
Calibration and sequential updating of a coupled hydrologic-hydraulic model using remote sensing-derived water stages
Two of the most relevant components of any flood forecasting system, namely the rainfall-runoff and flood inundation models, increasingly benefit from the availability of spatially distributed Earth Observation data. With the advent of microwave remote sensing instruments and their all weather capabilities, new opportunities have emerged over the past decade for improved hydrologic and hydrauli...
متن کاملThe Use of H-SAF Soil Moisture Products for Operational Hydrology: Flood Modelling over Italy
The ever-increasing availability of new remote sensing and land surface model datasets opens new opportunities for hydrologists to improve flood forecasting systems. The current study investigates the performance of two operational soil moisture (SM) products provided by the “EUMETSATSatellite Application Facility in Support of Operational Hydrology and Water Management” (H-SAF, http://hsaf.met...
متن کاملEstimating runoff precipitation and providing land use maps and agriculture levels in different periods of time, using remote sensing technology in Roud Zard basin area
Today, remote sensing technology is used in all scientific and informing fields around the world, and it has achieved to very satisfying results. In the present study, by using remote sensing technology and application of satellite photographs the coefficient of curve number was estimated with high accuracy and pick discharge of the flood was calculated with a good accuracy. In this study, i...
متن کاملFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملLand Use Dependent Snow Cover Retrieval
The DLR-funded project “Integration of remote sensing data in operational water balance and flood forecasting systems” (InFerno) has been originated to establish an operational synergy of remote sensing and flood forecasting. Upon availability, InFerno intends to make excessive use of ENVISAT ASAR data, which will provide microwave imagery at a specifically appropriate spatial and temporal reso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016